Tag Archives: biologia

Los peces martillo tienen una visión estereoscópica en 360 grados

16 Feb
Anuncios

Secuenciado el genoma de la vaca

27 Abr

Secuenciado el genoma de la vaca 

Abril 25, 2009

vaca
L1 Dominette 01449, el ejemplar de vaca Hereford que ha servido como base para la secuenciación. MICHAEL MACNEIL/USDA/ARS

Público Digital

La profesora de la Universidad Autónoma de Madrid Marta Izquierdo abría su libro sobre ingeniería genética con una cita muy familiar, pero poco habitual en un texto científico: “Tengo una vaca lechera, no es una vaca cualquiera. Me da leche merengada, ay que vaca tan salada”. Izquierdo introducía así las nuevas tecnologías genéticas, cuyas repercusiones se extienden al campo práctico de la mejora agrícola y ganadera. La vieja canción y su interpretación biológica están ahora más cerca con el hito que hoy publica Science: la secuencia completa del genoma de la vaca doméstica.

El logro es producto del trabajo de tres centenares de científicos de 25 países durante seis años, un ejemplo de los grandes proyectos de colaboración que se han convertido en norma en los estudios genéticos. Roderic Guigó, coordinador del programa de Bioinformática y Genómica del Centro de Regulación Genómica (CRG) de Barcelona, que ha dirigido uno de los grupos participantes en el Consorcio del Genoma Bovino, explica la necesidad de estos grandes conglomerados: “Secuenciar un genoma todavía es técnicamente complejo”, dice.

Pero, al mismo tiempo, subraya una aparente paradoja: “Las máquinas de última generación permiten simplificar la secuenciación, que se puede completar en un sólo laboratorio. Por ejemplo, el CRG trabaja en los genomas de la remolacha, el melón y el pulgón. Pero en cambio, el análisis de la información es cada vez más complejo”. “Por eso es dudoso que los genomas humanos personales, que en dos años podrían estar disponibles por menos de 1.000 euros, sean de gran utilidad para la gente que los encargue”, añade.

Es precisamente este terreno del análisis computacional el que aporta el grupo de Guigó a los proyectos genómicos. En el caso del genoma de la vaca (Bos taurus), obtenido a partir de la raza Hereford, el análisis revela que, como en la canción, el genoma vacuno no es un genoma cualquiera, sino bastante particular. La primera sorpresa, señala Guigó, es que “los humanos estamos más próximos evolutivamente a los roedores que a la vaca, pero sin embargo los genomas de humanos y vacas se parecen más”. “De los 22.000 genes de la vaca, compartimos el 80%”, agrega.

Una aventura evolutiva

No obstante, incluso con esta similitud y según destaca otro de los investigadores del consorcio, Harris Lewin, de la Universidad de Illinois (EEUU), el genoma humano ha sido “relativamente conservado” durante su evolución. En comparación, la vaca es casi una aventura de la naturaleza. Entre los genes exclusivos de esta especie que no se han hallado en otros mamíferos destacan los relacionados con la digestión, la inmunidad y la producción de leche.

En el primer caso, las singularidades del genoma vacuno se traducen en la presencia de cuatro estómagos o cámaras estomacales que les permite aprovechar vegetales poco nutritivos, como la hierba. En cuanto a la leche, los genes de la vaca posibilitan un producto rico en proteínas y con actividad antimicrobiana. De hecho, Theresa Casey, investigadora de la Universidad de Michigan (EEUU) que se ha centrado en este aspecto, opina que “la leche evolucionó con una función inmunitaria”.

Pero las peculiaridades de los cromosomas vacunos van más allá de los genes inventados por esta línea evolutiva, como señala Lewin: “La vaca tiene uno de los genomas más reorganizados entre todos los mamíferos”. Ciertos fragmentos de los cromosomas pueden cambiar de lugar, invertirse o duplicarse. Los puntos de ruptura en la vaca acumulan una especial abundancia de segmentos duplicados y secuencias repetidas, y estos cambios no son inocuos, sino que afectan a genes relacionados con la fisiología digestiva, inmunológica o glandular de la vaca. Es por esto que para Lewin, esos puntos de ruptura son “sitios calientes de evolución en el genoma”.

La vaca ofrece además otra particularidad: es la única especie de ganado secuenciada hasta ahora. Comparando diversas razas, los investigadores han extraído conclusiones de aplicación práctica en la actividad ganadera. En el ADN vacuno, concluyen los científicos, ha quedado impresa la huella de la mano humana que ha seleccionado los rasgos más deseables para la producción de carne y leche. A lo largo de esta selección artificial, el genoma vacuno no se ha empobrecido. “Yo no creo probable que la reorganización sea producto de la domesticación, pero no lo sabremos hasta que secuenciemos otros rumiantes”, reflexiona Guigó.

Los genes de la vaca gozan de buena salud: las 800 razas reúnen una diversidad genética comparable a la humana. En el futuro, los investigadores confían en que el mayor conocimiento de los genes de esta especie y de sus funciones ayude a mejorar las razas para obtener animales más resistentes a infecciones, poco exigentes y mejores productores de carne y leche, sobre todo para favorecer a los países en desarrollo.

Datos básicos para un DNI genético

22.000 genes

El genoma de la vaca contiene unos 22.000 genes, una cantidad en el mismo orden de magnitud que los humanos.

29 pares de cromosomas

La vaca tiene 29 pares de cromosomas, además de los sexuales X e Y. Este último, el masculino, no se ha secuenciado.

80% de genes compartidos

El 80% de los genes vacunos están presentes en los humanos.

14.345 genes en otras especies

Los 14.345 genes de la vaca presentes en otras siete especies de mamíferos sugieren su posible uso en estudios biomédicos.

5 genes ausentes

Cinco genes del metabolismo humano faltan en la vaca, lo que revela su singularidad metabólica.

El ovillo evolutivo de la oveja

También en la edición de hoy de ‘Science’, otro estudio explora la historia genética de la oveja a través de un tipo particular de elementos del ADN, los retroposones, secuencias similares a retrovirus internos naturales que son capaces de saltar de un lugar a otro de los cromosomas. Por primera vez se ha empleado esta técnica para rastrear la evolución de una especie. El estudio muestra que las ovejas se dispersaron por Eurasia y África en varias migraciones entre 10.000 y 6.000 años atrás. Las variedades actuales de mayor interés por su producción de carne y lana proceden de una expansión desde el suroeste de Asia que arrinconó las razas más primitivas en áreas remotas donde hoy persisten en estado semisalvaje. Un ejemplo es la oveja de Soay, en el archipiélago escocés de Saint Kilda.

Cinco milenios cabalgando

Recientemente, un estudio arqueológico concluía que la relación entre humanos y caballos se remonta a hace unos 5.000 años, y que las primeras granjas de domesticación se crearon en las estepas de Asia, en Kazajistán. Un nuevo análisis de cómo ha evolucionado la coloración del pelaje de los equinos confirma hoy en ‘Science’ estos resultados. Los investigadores analizaron ADN de fósiles de caballos de distintas épocas procedentes de Europa central y oriental, Siberia y la Península Ibérica. Así logran concluir que los primitivos caballos salvajes presentaban coloraciones uniformes negras o rojizas, y que todas las demás tonalidades y patrones variegados surgieron rápidamente hace unos cinco milenios en Siberia y Europa oriental como efecto de los cruces seleccionados.

fuente: Visto en oldearth.wordpress.com

¿Hay materia prebiótica en el espacio?

2 Abr

¿Hay materia prebiótica en el espacio? 

Marzo 31, 2009

polvo
Partícula de polvo interplanetario . Foto: Guillermo Muñoz y Virginia Souza-Egipsy (CAB) / SINC

Visto en SINC

Un astrofísico español y otro francés han identificado una banda en el rango del infrarrojo que sirve para rastrear la presencia de materia orgánica rica en oxígeno y nitrógeno en los granos de polvo interestelares. Si algún telescopio detecta esa banda se podría confirmar la presencia en el espacio de aminoácidos y otras sustancias precursoras de la vida.

“Hemos comprobado en el laboratorio que una materia orgánica de interés prebiótico denominada yellow stuff (sustancia amarilla) presenta una banda de absorción muy característica que se puede buscar en zonas del espacio con presencia de granos de polvo para tratar de identificar sustancias similares”, señala a SINC Guillermo Muñoz, investigador en el Centro de Astrobiología (INTA-CSIC).

El científico explica que los granos de polvo que se observan en las nubes interestelares y alrededor de las estrellas jóvenes suelen “estar rodeados de diminutos mantos de hielo ricos en agua y otras moléculas simples, como el monóxido de carbono (CO), el metanol (CH3OH) o el amoniaco (NH3), sobre los que incide la luz ultravioleta y los rayos cósmicos”.

Muñoz y su colega francés Emmanuel Dartois, del Instituto de Astrofísica Espacial de París (Francia), han recreado en el laboratorio esas condiciones interestelares mezclando diversos gases a muy baja presión y temperatura (-263ºC), e irradiando con luz ultravioleta el hielo de tipo interestelar que se forma. Como resultado se genera el yellow stuff , una sustancia amarillenta rica en carbono pero con hidrógeno, nitrógeno y mucho oxígeno asociado. Este material está compuesto por numerosas moléculas orgánicas, como ácidos carboxílicos, glicina y otros aminoácidos (las moléculas esenciales en la composición de las proteínas).

La banda de absorción del yellow stuff se sitúa en los 3,4 micrómetros del espectro del infrarrojo medio, y al representarla en una gráfica su perfil presenta dos picos característicos. “Esto permite su posible detección en regiones de formación planetaria parecidas a nuestra nebulosa solar y en cuerpos del Sistema Solar”, señala Muñoz.

“Además la síntesis de compuestos orgánicos por irradiación de hielo podría estar relacionada con la presencia de esta sustancia en cometas, como el Halley, y también podría explicar la composición isotópica del material carbonáceo detectado en el polvo interplanetario y en un tipo de meteoritos ricos en carbono denominados condritas carbonáceas”, añade.

Hasta ahora los científicos no han observado la banda infrarroja del yellow stuff en el espacio interestelar, y tampoco en cuerpos del Sistema Solar, pero postulan que podría deberse a las limitaciones de las técnicas actuales. En el caso de las condritas carbonáceas y el polvo interplanetario, ambas contienen carbono asociado a isótopos pesados del hidrógeno (deuterio sobre todo, 2H) y nitrógeno (15N) característico de reacciones químicas a temperaturas muy bajas, como las que se generan en el hielo irradiado, pero ese tipo de carbono meteorítico es distinto al yellow stuff.

Los productos prebióticos derivados de la irradiación de hielos pierden su carácter orgánico y su alto contenido en hidrógeno, nitrógeno y oxígeno cuando se calientan a más de 300 ºC, como ocurre en las proximidades del Sol. “Esa especie de yellow stuff calentado, que todavía preserva un alto contenido en isótopos pesados, podría ser el que se encuentra formando parte de las condritas carbonáceas y el polvo interplanetario”, indica a SINC Muñoz.

La sonda espacial Rosetta de la Agencia Espacial Europea tratará de detectar aminoácidos y otras moléculas de interés prebiótico en el núcleo del cometa 67P/Churyumov-Gerasimenko, cuando lo alcance en el año 2014.

—————————————

Referencia bibliográfica:

Guillermo M. Muñoz Caro y Emmanuel Dartois. “A tracer of organic matter of prebiotic interest in space, made from UV and thermal processing of ice mantles”. Astronomy and Astrophysics 494 (1): 109-115, 2009.

Descubren cómo las bacterias se hacen resistentes a los antibióticos

16 Dic

Descubren cómo las bacterias se hacen resistentes a los antibióticos 

Diciembre 16, 2008

Posted by Manuel 

villa
Alejandro Vila (izq.) y Pablo Tomatis, autores del trabajo que se publica hoy en PNAS

Foto: Mario García

Nora Bär- LA NACIÓN- Edición Digital

Por su efectividad para curar enfermedades que en otras épocas eran mortales, hasta no hace mucho los antibióticos tenían aura de medicamentos mágicos. Las bacterias, sin embargo, se encargaron de demostrar lo contrario. Datos internacionales indican que hasta un 70% de los patógenos causantes de infecciones pulmonares son resistentes a uno de los antibióticos de primera línea y hasta el 60% de las infecciones hospitalarias se deben a microbios resistentes.

Actualmente, la resistencia bacteriana es un verdadero dolor de cabeza para los sanitaristas. Pero al menos por ahora investigadores argentinos ganaron unround en el combate contra los microorganismos patógenos: un trabajo que hoy se publica en la revista científica Proceedings of the National Academy of Sciences logra desentrañar una de las claves de la resistencia bacteriana a los antibióticos: mostraron a través de estudios estructurales, bioquímicos y microbiológicos dónde se registran los cambios moleculares que les permiten a los microorganismos desactivar estos fármacos.

“Desde que, hace un siglo y medio, Darwin publicó El origen de las especies , la palabra “evolución” designa el proceso de cambios genéticos que llevan a la aparición de nuevas especies o su adaptación a distintos ambientes -cuentan Alejandro Vila, del Instituto de Biología Molecular y Celular de Rosario, del Conicet y la Universidad Nacional de esa ciudad, y Pablo Tomatis, autores del trabajo-. Algo menos conocido, sin embargo, es que no sólo evolucionan los organismos completos, sino también las moléculas. El concepto de evolución también se aplica a las proteínas y es crucial para la aptitud o supervivencia de los organismos, ya que permite que éstos se adapten a nuevas condiciones de su entorno. Sin embargo, el curso de la evolución de las proteínas no se entiende en su totalidad porque depende de una compleja interacción entre su secuencia, su estructura, su función y su estabilidad.”

En su intento de entender los mecanismos de resistencia de las bacterias patógenas a los antibióticos, Vila y Tomatis trabajan en unas enzimas (proteínas que catalizan reacciones químicas) llamadas metalobetalactamasas que les confieren esa capacidad. Es decir, la bacteria se defiende haciendo que evolucione esta proteína; lo que significa que todo un organismo depende de una proteína, una molécula.

Los científicos reprodujeron ese proceso in vitro, agregando mayores cantidades de antibióticos e induciendo mutaciones en la proteína. “Emulamos en el laboratorio el proceso natural de evolución de esta proteína -explica Vila-. Ya habíamos visto que podíamos tener una bacteria más resistente a los antibióticos haciendo evolucionar las betalactamasas. En este trabajo, logramos hacer evolucionar una de estas enzimas en el laboratorio y obtuvimos una más eficiente.”

El resultado los sorprendió: “Uno esperaría mutaciones en los sitios de contacto con el antibiótico. Lo raro es que los cambios que hacen que la enzima desactive más rápidamente los antibióticos ocurren lejos del sitio donde se une a éstos, algo que hubiera sido imposible de predecir racionalmente basándose en los enfoques convencionales. Es una idea que contradice la intuición”. Aislando un grupo de proteínas mutantes, los investigadores trazaron su estructura metalográfica y pudieron visualizar cada uno de los sitios en que la proteína va evolucionando, qué hacen y cómo se conectan entre sí. “Vemos que hay interacciones muy débiles que van de un punto a otro de la proteína y le dan mucha flexibilidad, de modo que se puede abrir y cerrar mucho más rápido en la cavidad donde se une con el antibiótico -dice Vila-. Lo que nos sorprende es que lo hace a distancia.”

El de las betalactamasas es un sistema modelo para estudiar la evolución en general de las proteínas y arroja también otras conclusiones. “Mostramos que estas proteínas que se hace mutar en el laboratorio permiten predecir futuros escenarios de resistencia y abren la puerta al diseño de nuevos antibióticos -afirma Vila-. Nuestra idea es adelantarnos a la evolución. Podemos anticipar en qué dirección va a ir la resistencia de las bacterias, con lo que este conocimiento tendría un carácter predictivo.”